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Abstract. We propose the use of a conditional generative adversarial network (cGAN) to generate anatomically accurate full-sized CT images.
Our approach is motivated by the recently discovered concept of style transfer and proposes to mix style and content of two separate CT images
for generating a new image. We argue that by using these losses in a style transfer based architecture along with a cGAN, we can increase the
size of clinically accurate, annotated datasets by multiple folds. Our framework can generate full-sized images with novel anatomy at spatial high
resolution for all organs and only requires limited annotated input data of a few patients. The expanded datasets our framework generates can then
be utilized within the many deep learning architectures designed for various processing tasks in medical imaging.

1 Introduction

Deep learning has shown great promise for a myriad of applications in CT imaging such as improving image quality
in low dose acquisition, cross modality translations etc. However training of deep networks requires an abundance
of clinical training data. This remains a challenge due to scarcity/privacy issues and the high interpatient anatomical
variability. Also, often these datasets are not comprehensively annotated, owing to the costliness and scarcity of expert
annotation in the medical domain. Hence we present an approach to increase the training data multiple folds with as
few as ten training samples. Our framework also ensures that the full-sized generated CT images are anatomically
correct and contain enough anatomical variation from training data.

Our method is inspired by the work of Zhao et al.1 which simulates retinal fundus images and neuronal images
with a cGAN2 by conditioning on segmented filamentary ground truths. The main difference between their setup
and ours is that the retinal image generation process through style transfer is fairly straightforward due to the near
uniform texture of a retinal image. The content loss along with the adversarial loss ensures that filamentary structure is
respected while the style loss transfers the texture of the style image onto the generated image. Conversely, CT images
consist of different structures with different textures. The overall style loss of the entire image will not work since the
style changes dramatically from one part of the image to the next. Our paper describes our solution to this challenge.
To the best of knowledge, our proposed approach is the first attempt to incorporate style transfer techniques involving
a cGAN for the synthesis of new full-sized CT images with correct and varied anatomical features of all organs.

2 Methods

In our approach, the generator Gθ is viewed as a mapping function from the segmentation map of a CT image y to a
plausible CT image x inheriting the style of a particular style image xs, which is another CT image from a different
patient, on a per-organ basis. For example, the heart of the generated CT image will match in appearance the heart of
the style image; likewise for lungs, spinal cord, bones, etc. Let us denote x ∈ RWxH as the gray-scale CT image to be
generated, while y ∈ {0, 50, 100, 150, 200, 230}WxH is the segmentation map of a real image xo, given as conditional
input to the generator. Let Gθ : (y ∈ RWxH , z ∈ RZ) −→ x ∈ RWxH denote the image generation function that takes a
segmentation map image y and a noise code z as input to produce a CT image x of a particular style. As shown in Fig.
2, the numerical values 0, 50, 100... are gray-scale values denoting the segmented regions of the corresponding organs.
The style image xs will be used in calculating the style loss over the generated image whereas the original image xo
(corresponding to the segmentation map) will be used for determining the content loss. Hence, xo determines the new
anatomy and xs makes sure it has the proper texture appearance. Our network architecture is shown in Fig. 1.

Our contributions are: (1) We define a mapping function G learned from a very small training set {(xi, yi)}ni=1 for
a style image; (2) We can obtain distinct plausible gray-scale CT image instances by varying the noise code z for a
particular style and segmentation; (3) Our method facilitates the generation of even more anatomical variations in the
generated images by perturbing the boundaries of the segmentation map by some input, whereby the correctness of
these variations is ensured by the style transfer of the corresponding parts of the style CT image.

2.1 Generator and Discriminator

Our method employs an encoder-decoder strategy for the generator.3, 4 Since we are using a cGAN architecture, the
segmentation map (y) along with the noise vector z, a 200-dimensional random code, are given as inputs. The noise
code z is fully connected to the first layer, which is then reshaped. We use kernel size 4 and stride 2 without any
pooling layer for all layers of G and D. The basic network architecture proposed in5 is followed to build the layers
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Fig 1 Framework for training style transfer of every segment of style image over input segmentation map.

of the generator with multiple Convolution-BatchNormLeakyRelu components. The activation function of the output
layer of G is tanh to squash the value between - 1 and 1. On par with our generator, the same ConvolutionBatchNorm-
LeakyRelu building blocks are used in building our discriminator. The activation function of the output layer of D is
a sigmoid function. An Adam optimizer with mini-batch of size 16 and Stochastic gradient descent are employed to
update the parameters (θ of G and γ of D) during the training process.

2.2 Loss Functions

Since the mapping function G has to be learned with respect to a style image xs, perceptual losses are needed to
be optimized for learning that function, i.e. we need to add style and content loss as part of the generator G. The
motivation for the aforementioned perceptual losses for our experiments is to transfer anatomically correct texture
and content (location, size) for each synthesized part of the generated CT image. The content loss, on the other hand,
ensures anatomical correctness while the style of another patient provides texture variation for the generated CT image.

We use a VGG-197 convolutional neural network (CNN) to extract features from its multiple layers.8 For style,
we extract features from the RELU activations of the first layer and every other RELU layer that succeeds the pooling
layer in the VGG. We extract these features for both the style image (xs) and the generated image (x) to calculate the
style loss. Similarly for the content loss we extract feature maps from the RELU activations of the tenth layer from
both the original image (xo) and the generated image (x).

Let φl(·) be the function implemented by the part of the VGG-19 network from the input up to layer l, and let Ol,
Sl, and Rl denote the feature maps extracted from the VGG at layer l, for the original image xo, the style image and
the stylized image x, respectively.

Ol = φl(xo), S
l = φl(xs), R

l = φl(x) (1)

Let the dimensionality of these feature maps be Nl ×Ml and let Rlij and Olij be the jth position of filter i in layer l of
the network. Then the content loss at layer l as per Gatys et al.,9 can be defined as:

Llc(x, xo) =
1

2NlMl
‖φl(x)− φl(xo)‖2F =

1

2NlMl

∑
i,j

|Rlij −Olij |2 (2)

As per Gatys, et al.,9 the style of an image if measured from layer l, consists of the correlations between the different
feature responses which can be encoded into the Graham Matrices. We can define this for style image as:

G(S)lij = Sli∗.S
l
j∗ =

Ml∑
k=1

SlikS
l
jk (3)
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Fig 2 Left: An example of a segmentation map of a CT image. Right: Fixed Pixel values used to denote the segment.

As such the style loss at layer l would be:

Lls(x, xs) =
1

4N2
l M

2
l

‖G(R)l −G(S)l‖2F =
1

4N2
l M

2
l

∑
i,j

|G(R)lij −G(S)lij |2 (4)

Since medical images are generally spatially smooth in texture we add total variation loss to LG as well.

Ltv(x) =
∑
w,h

(‖xw,h+1 − xw,h‖22 + ‖xw,h+1 − xw,h‖22) (5)

As mentioned earlier, each segment of the CT image has its own style. Hence we use the segmentation masks of each
image, namely style image and generated image, to extract the style features of each segmented region separately and
thereby calculate the style loss of each segmented region. Hence the total style loss is:

Ls(x, xs) =
∑
sg∈SG

∑
l∈SL

1

4N2
l M

2
l

‖RRlsg − SSlsg‖2F (6)

where SG is the set of all six segments in the images and SL is the set of all style layers in VGG net As per above the
content loss is given by:

Lc(x, xo) =
∑
sg∈SG

∑
l∈CL

1

2NlMl
‖Rlsg −Olsg)‖22 (7)

where CL is the set of all content layers. We will calculate these perceptual losses by considering features of the
aforementioned layers and combine them with the adversarial loss of the generator when generating an image. The
loss for G becomes:

LG(Gθ) = −
∑
i

logDγ(Gθ(yi, zi), yi) + wsLs + wcLc + wtvLtv (8)

For the discriminator nothing extra needs to be added; hence the loss includes the adversarial component only. The
loss for D is:

LD(Dγ) = −
∑
i

logDγ(xi, yi) + log (1−Dγ(Gθ(yi, zi), yi)) (9)

It is clear that by training our cGAN to optimize the above loss functions, the style transfer of every organ of the CT
image will contribute to the texture of the corresponding part of the generated CT image.

2.3 Dataset and Implementation

We downloaded a set of normal-dose lung CT images from the Cancer Imaging Archive10 of 12 patients, each of
size of 512 × 512. We manually selected 1-2 images from a similar anatomical position of each patient to obtain
20 images. The proposed neural network was implemented using the Tensorflow deep learning library in a Python3
environment on the Google Cloud Platform. All experiments were performed using an NVIDIA Tesla P100 graphics
card with 30 GB RAM. The training was done for 100 epochs.
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Fig 3 First Row: The last two images are generated corresponding to the segmentation maps of the first two images. Second Row: Segments are
zoomed to show the effect of style transfer on input images (content image + style image = result image)

3 Results and Conclusion

Figure 3 shows some first results we obtained with our method. We observe that the generated CT images preserve the
segmented input anatomy (the organs), while exhibiting different yet realistic-looking texture appearances throughout
the image. For the generated image A, for example, we observe that the spinal cord is now completely surrounded by
bone as in the style image, while the shape and location of the spine is similar to input image A. The spine texture
is also similar to that of the style image. On the other hand, for the generated image B, we observe that the texture
is more dense, similar to the style image (i.e., the dark areas between the different structures are reduced), while the
regions themselves are more like input image B. All this suggests that our generation model can capture such intrinsic
features without explicit human interventions for conveying such prior knowledge.

We presented a first implementation of a promising new cGAN based approach to synthesize large (512x512) CT
images given a segmentation map. The synthesized images look realistic, possess acceptable anatomical detail and
texture variations. Moreover, the model is capable of learning from small training sets of as few as 10-20 examples.
Future work will build on our method and study how to create perturbations to existing segmentation maps or make
new ones, so as to generate more anatomically diverse CT images. By applying a pre-trained segmentation network
we could use readily available non-annotated CT images for style transfer, adding a lot more data with different texture
patterns. We also intend to design a more sophisticated scheme to mix texture and content in varied ratios in different
parts of the CT. Finally, we also plan to conduct user studies with clinicians to verify and further refine our method.
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